Comment on `Thermodynamic properties and the magnetic neutron scattering cross-section of an atom in a solid'

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys.: Condens. Matter 94495
(http://iopscience.iop.org/0953-8984/9/21/014)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.207
The article was downloaded on 14/05/2010 at 08:48

Please note that terms and conditions apply.

COMMENT

Comment on 'Thermodynamic properties and the magnetic neutron scattering cross-section of an atom in a solid'

E Rastelli and A Tassi
Dipartimento di Fisica dell'Universitá, CNR, and Istituto Nazionale per la Fisica della Materia, 43100 Parma, Italy

Received 25 September 1996, in final form 21 November 1996

Abstract

We point out that the recent paper 'Thermodynamic properties and the magnetic neutron scattering cross-section of an atom in a solid' (S W Lovesey 1996, J. Phys.: Condens. Matter 85915) is based on a sum rule which is reliable only in the high-temperature limit. Indeed low-temperature experimental data cannot be favourably fitted.

A two-level model described by H_{0} is chosen [1] to describe an isolated atom and a Weiss molecular-field description of the magnetic environment is provided by the choice

$$
\begin{equation*}
V=\lambda_{x} J_{x}+\lambda_{y} J_{y}+\lambda_{z} J_{z} \tag{1}
\end{equation*}
$$

assuming
$\langle 1| J_{\alpha}|1\rangle=\langle 2| J_{\alpha}|2\rangle=0 \quad \alpha=x, y, z \quad\langle 1| J_{\alpha}|2\rangle=0 \quad \alpha=x, y \quad\langle 1| J_{z}|2\rangle \neq 0$
where $|j\rangle$ with $j=1,2$ are the two non-degenerate eigenstates of H_{0} of energy E_{1} and E_{2}, respectively.

In section 4 of [1] the author claims that 'Average values of products of J_{α} are obtained from the partition function $Z=2 \exp \left\{-\left(E_{1}+E_{2}\right) / 2 T\right\} \cosh (\epsilon / 2 T)$ by differentiating it the requisite number of times with respect to λ_{α} which appears in ϵ, where $\epsilon=$ $\sqrt{\left.\Delta^{2}+|2\langle 1| V| 2\right\rangle\left.\right|^{2}}$ with $\Delta=E_{1}-E_{2}$. The above statement is wrong when $\left[H_{0}, V\right] \neq 0$. Using the relationship between the weights attached to elastic and inelastic scattering events and the second derivative of the partition function: $\mu_{0}^{2}+T \chi=g^{2}\left(T^{2} / Z\right)\left(\partial^{2} Z / \partial \lambda_{z}^{2}\right)$, the author says: From the second derivative of the partition function we find the estimate

$$
\begin{equation*}
g^{2}\left\langle J_{z}^{2}\right\rangle=\mu_{0}^{2}+T \chi \tag{3}
\end{equation*}
$$

Equation (3) is equation (4.1) of [1], referred to by the author as a sum rule because on the basis of assumption (2) and of the incorrect relationship between $\left\langle J_{\alpha}^{2}\right\rangle$ and the second derivative of the partition function Z one has $\left\langle J_{x}^{2}\right\rangle=\left\langle J_{y}^{2}\right\rangle=0$ and $\left\langle J_{z}^{2}\right\rangle=J(J+1)$. All results of [1] spring from equation (3) as confirmed by the author in section 6 , where he claims 'We have demonstrated that a sum rule for the weights, which is an exact statement, permits the calculation of the thermodynamic quantities in terms of Δ and the critical temperature, say.'.

We state that equation (3) is reliable only in the high-temperature limit. The trouble is in the evaluation of $\left\langle J_{\alpha}^{n}\right\rangle$ (with $n>1$) as the nth derivative of the partition function since, when $\left[H_{0}, V\right] \neq 0$, as in the present case, this relationship is inconsistent. In particular, for $n=2$ the correct relationship is

$$
\begin{equation*}
\left\langle J_{\alpha}^{2}\right\rangle=\frac{1}{\beta^{2} Z} \frac{\partial^{2} Z}{\partial \lambda_{\alpha}^{2}}-\frac{2}{Z} \sum_{n=2}^{\infty}(-1)^{n} \frac{\beta^{n}}{(n+2)!} \sum_{l=1}^{n-1}(n-l+1) \operatorname{Tr}\left(J_{\alpha} C_{l, \alpha} \mathcal{H}^{n-l}\right) \tag{4}
\end{equation*}
$$

where $\mathcal{H}=H_{0}+V, C_{l, \alpha}=\left[\mathcal{H}^{l}, J_{\alpha}\right]$. We give the proof of equation (4). The second derivative of the partition function

$$
\begin{equation*}
Z=\operatorname{Tr} \mathrm{e}^{-\beta \mathcal{H}}=\operatorname{Tr}\left[\sum_{n=0}^{\infty}(-1)^{n} \frac{\beta^{n}}{n!} \mathcal{H}^{n}\right]=\sum_{n=0}^{\infty}(-1)^{n} \frac{\beta^{n}}{n!} \operatorname{Tr}\left(\mathcal{H}^{n}\right) \tag{5}
\end{equation*}
$$

with respect to λ_{α} reads

$$
\begin{equation*}
\frac{\partial^{2} Z}{\partial \lambda_{\alpha}^{2}}=\sum_{n=2}^{\infty}(-1)^{n} \frac{\beta^{n}}{n!} \operatorname{Tr}\left(\frac{\mathrm{d}^{2} \mathcal{H}^{n}}{\mathrm{~d} \lambda_{\alpha}^{2}}\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathcal{H}^{n}}{\mathrm{~d} \lambda_{\alpha}^{2}}=\sum_{l=1}^{n-1} \sum_{m=0}^{l-1} \mathcal{H}^{m} J_{\alpha} \mathcal{H}^{l-1-m} J_{\alpha} \mathcal{H}^{n-1-l}+\sum_{l=0}^{n-2} \sum_{m=0}^{n-2-l} \mathcal{H}^{l} J_{\alpha} \mathcal{H}^{m} J_{\alpha} \mathcal{H}^{n-2-l-m} \tag{7}
\end{equation*}
$$

The cyclic property of the trace allows us to write

$$
\begin{gather*}
\frac{\partial^{2} Z}{\partial \lambda_{\alpha}^{2}}=\sum_{n=2}^{\infty}(-1)^{n} \frac{\beta^{n}}{n!}\left[\sum_{l=1}^{n-1} \sum_{m=0}^{l-1} \operatorname{Tr}\left(J_{\alpha} \mathcal{H}^{l-1-m} J_{\alpha} \mathcal{H}^{n-1-l+m}\right)+\sum_{l=0}^{n-2} \sum_{m=0}^{n-2-l} \operatorname{Tr}\left(J_{\alpha} \mathcal{H}^{m} J_{\alpha} \mathcal{H}^{n-2-m}\right)\right] \\
=\sum_{n=2}^{\infty}(-1)^{n} \frac{\beta^{n}}{n!} 2 \sum_{l=0}^{n-2}(n-l-1) \operatorname{Tr}\left(J_{\alpha} \mathcal{H}^{l} J_{\alpha} \mathcal{H}^{n-2-l}\right) \tag{8}
\end{gather*}
$$

From the identity $\operatorname{Tr}\left(J_{\alpha} C_{l, \alpha}\right)=0$ it follows

$$
\begin{gather*}
\frac{\partial^{2} Z}{\partial \lambda_{\alpha}^{2}}=\sum_{n=2}^{\infty}(-1)^{n} \frac{\beta^{n}}{(n-2)!} \operatorname{Tr}\left(J_{\alpha}^{2} \mathcal{H}^{n-2}\right)+2 \sum_{n=4}^{\infty}(-1)^{n} \frac{\beta^{n}}{n!} \sum_{l=1}^{n-3}(n-1-l) \operatorname{Tr}\left(J_{\alpha} C_{l, \alpha} \mathcal{H}^{n-2-l}\right) \\
=\beta^{2}\left[\operatorname{Tr}\left(J_{\alpha}^{2} \mathrm{e}^{-\beta \mathcal{H}}\right)+2 \sum_{n=2}^{\infty}(-1)^{n} \frac{\beta^{n}}{(n+2)!} \sum_{l=1}^{n-1}(n-l+1) \operatorname{Tr}\left(J_{\alpha} C_{l, \alpha} \mathcal{H}^{n-l}\right)\right] \tag{9}
\end{gather*}
$$

Dividing by $\beta^{2} Z$ equation (4) is obtained.
Note that the corrections with respect to equation (4.1) are negligeable in the hightemperature limit, but are dramatic in the low-temperature limit of interest for the author to study actual compounds $[2,3]$. The expectation for the value of the gap at zero temperature $\epsilon(0)$ obtained from the sum rule (4.1) of [1] is

$$
\begin{equation*}
\frac{\Delta}{\epsilon(0)}=\sqrt{1-\frac{\tanh x}{x}} \tag{10}
\end{equation*}
$$

with $x=\Delta / 2 T_{c}, T_{c}$ being the temperature at which $\epsilon=\Delta$.

As for the compound studied in [2] the author expects $\epsilon(0)=1.64 \mathrm{meV}$, whereas the expectation of the mean field approximation used in [2] is $\epsilon(0)=0.65 \mathrm{meV}$. Unfortunately any comparison with experiment is lacking. However, for $\operatorname{PrFe} 2_{2} \mathrm{Ge}_{2}$ and $\mathrm{PrFe}_{2} \mathrm{Si}_{2}$ studied in [3] measurements of the gap are available both in the paramagnetic region (Δ) and in the ordered region $(\epsilon(0))$. For $\mathrm{PrFe}_{2} \mathrm{Ge}_{2}$ the experimental value of $\Delta=0.8 \mathrm{meV}$ and the critical temperature $T_{N}=14.2 \mathrm{~K}$ [3] lead to $\epsilon(0)=4.3 \mathrm{meV}$ using equation (10), whereas the experimental value is $\epsilon(0)=2.7 \mathrm{meV}$ [3]. As for $\mathrm{PrFe}_{2} \mathrm{Si}_{2}$ equation (10) gives $\epsilon(0)=3.5 \mathrm{meV}$ taking the experimental $\Delta=2.4 \mathrm{meV}$ and the critical temperature $T_{N}=7.7 \mathrm{~K}$ [3]. The experiment gives $\epsilon(0)=2.8 \mathrm{meV}$ [3].

References

[1] Lovesey S W 1996 J. Phys.: Condens. Matter 85915
[2] Staub U, Soderholm L, Skanthakumar S and Antonio M R 1995 Phys. Rev. B 529736
[3] Blaise A, Fåk B, Sanchez J P, Amoretti G, Santini P, Caciuffo R, Schmitt D, Malalman B and Venturini G 1995 J. Phys.: Condens. Matter 78317

